On the homogeneity of global minimizers for the Mumford-Shah functional when K is a smooth cone

نویسنده

  • Antoine Lemenant
چکیده

We show that if (u,K) is a global minimizer for the Mumford-Shah functional in R , and if K is a smooth enough cone, then (modulo constants) u is a homogenous function of degree 1 2 . We deduce some applications in R as for instance that an angular sector cannot be the singular set of a global minimizer, that if K is a half-plane then u is the corresponding cracktip function of two variables, or that if K is a cone that meets S with an union of C∞ curvilinear convex polygones, then it is a P, Y or T.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A rigidity result for global Mumford-Shah minimizers in dimension three

We study global Mumford-Shah minimizers in R , introduced by Bonnet as blow-up limits of Mumford-Shah minimizers. We prove a new monotonicity formula for the energy of u when the singular set K is contained in a smooth enough cone. We then use this monotonicity to prove that for any reduced global minimizer (u,K) in R, if K is contained in a half-plane and touching its edge, then it is the half...

متن کامل

Regularity of the singular set for Mumford-Shah minimizers in R near a minimal cone

We show that if (u,K) is a minimizer of the Mumford-Shah functional in an open set Ω of R, and if x ∈ K and r > 0 are such that K is close enough to a minimal cone of type P (a plane), Y (three half planes meeting with 120◦ angles) or T (cone over a regular tetrahedron centered at the origin) in terms of Hausdorff distance in B(x, r), then K is C equivalent to the minimal cone in B(x, cr) where...

متن کامل

Existence of Minimizers of the Mumford-shah Functional with Singular Operators in Two Space Dimensions

We consider the regularization of inverse problems involving certain local (differential) and nonlocal (integral) operators, by means of the minimization of a functional formed by a term of discrepancy to data and a Mumford-Shah functional term. We are partially inspired by classical linear inverse problems in image processing, namely inpainting and deblurring. We provide existence results of m...

متن کامل

Higher Integrability for Minimizers of the Mumford-shah Functional

We prove higher integrability for the gradient of local minimizers of the Mumford-Shah energy functional, providing a positive answer to a conjecture of De Giorgi [5].

متن کامل

Global Minimizers of The Active Contour/Snake Model

The active contour/snake model [9, 2, 10] is one of the most wellknown segmentation variational models in image processing. However this model suffers from the existence of local minima which makes the initial guess critical for getting satisfactory results. In this paper, we propose to solve this problem by finding global minimizers of the active contour model following the original work of Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008